IT consultant's struggling day in studying SAP, programming, consulting methodologies, and some industry specific topics

Soloblog - Tech Consulting

Consulting/Business

[コンサル]フェルミ推定へのアプローチ方法、計算式の立て方[フェルミ推定]

投稿日:2020-10-29 更新日:

現在、外資総合コンサルファームで勤務している私ですが、とある理由から戦略ファームへの転職を考えております。

初めてコンサル業界に入ったときはフェルミ推定、それとケース面談はまぁやらされました。その後何回か転職はしているのですが、一度コンサルに入ったせいなのか、しばらくフェルミ推定などをやることはありませんでした。

しかし、今回は総合⇒戦略へのキャリアチェンジに挑戦することになるので、フェルミ推定とケース面談は必ず出されることになると予想されます。

したがって、今回はフェルミ推定について、アプローチ、そしてよくある問題別の計算式の立て方についてまとめていきたいと思います。

コンサルを目指す方に知ってほしいフェルミ推定の流れ

想定する読者

本投稿で想定する読者は、コンサルを目指してフェルミ推定の勉強をしたり、ケース面接の勉強、準備をしている就活生の皆様、そして未経験からコンサルへの転職を希望されている転職希望者の方々です。

海外とかではフェルミ推定とかケース面談とかもうやめようよ、という雰囲気があるようなのですが、日本ではしばらく続くと思われるので、コンサルを目指す方であれば知っておいて損はないでしょう。

主な読者としては就活生、転職志望者だと思いますが、既にコンサルティングファームで働いている方々のうち、今度面接官になる予定の方々なんかもおさらいをしておくと良いのではないでしょうか。

(アプローチを全く知らない状況でものすごくフリーダムに問題を出してしまって、あとでSNSで書かれる、といったリスクを低減することは出来るのではないかと思います)

想定するメリット

こちらの投稿では、以下のポイントがつかめるように意識して内容をまとめております。

  • コンサル業界の面接の流れ(主にフェルミ推定が出されることを想定)
  • フェルミ推定が出された場合の対処の仕方、話の進め方
  • フェルミ推定の問題別の取り組み方、計算式等の立て方、セグメントの分け方

さて、それでは面接の流から確認していきましょう。

面接の流れ

よくある面接の流れを確認しましょう。フェルミ推定が出されたときは、以下のような流れで対応するとGoodです。

  • 自己紹介、志望動機などの一般的な質疑応答
  • 問題が出される(フェルミ推定※自己紹介の内容に関連しているケースも)
  • 問題の前提の確認をする
  • アプローチの定義をする(基本計算式を立てる)、同時にセグメントを考える
  • 結果を伝える、検証する

問題について出題される

一番最初はオーソドックスな自己紹介、志望動機などの確認からですが、その後の問題については以下の2つのケースがあります。

  • 自己紹介に関連して出題されるケース
  • ファーム独自の問題が出されるケース

自己紹介の内容に関連して出題がされるケースでは、例えば趣味の話をしたら、それと関連した質問が出されます。スポーツ系の趣味がある方でしたら、そのスポーツの競技人口や、そのスポーツで使うことになる器具がどれくらいあるのか、あるいは市場規模はどのくらいあるのか、といった内容は対策しておいた方がいいかもしれませんね。

  • 映画鑑賞が趣味
    ⇒映画館ってどれくらいある?映画館の一日の売上ってどれくらいだと思う?
  • サッカーが趣味
    ⇒サッカーの競技人口ってどれくらい?サッカーのゴールの数ってどれくらいあると思う?

ファーム独自の問題が出されるケースもあります。BCGとかだと、筆記用具の史上規模ってどれくらい?とか、マッキンゼーだとミネラルウォーターの市場規模は?といった問題が頻出問題のようです。

ネットを探すと、過去の問題なども出てくるので、それをあらかじめ確認しておいて対策することもよいでしょう。

問題の前提確認をする

まずは問題が出されたら、その内容の前提を確認します。場合によっては面接官から十分に与えられているケースもありますが、話しながら考えるためにも、前提は確認しましょう。

例えば、バスケットボールってどれくらいあると思う?という質問が出たとしたら、以下のように前提を聞きます。

  • 日本の話でいいですか?
  • 個人が保有しているものと、学校などの施設が持っているものがあると思いますが、個人が持っているもののほうが大半だと思うので、個人のみを考慮するとしてよいですか?
  • 革製とゴム製がありますが、流通量の多い革製でいいでしょうか?

どうしたらいいですか?という質問でもいいのですが、ここは自分がやりやすい方向に誘導してしまいましょう。ちょっとしたテクニックです。(面接官がダメ!と言ってきたらもちろんそれに従いましょう。)

アプローチの定義をする(基本計算式を立てる)、同時にセグメントを考える

個人的にはこの部分が最も練習が必要なパートです。

問題の内容によって、どのように基本数式を立てていくと納得感があるのか、といったポイントを意識して、面接官に対して何を推定することで質問されている内容の回答を導き出すか、これを説明します。

問題の内容に応じて、とるべきアプローチは以下のように分岐すると考えられます。そして、これすごく重要ですが、アプローチを考えると同時にどういったセグメント分けが望ましいか、これも考えます。

セグメントは、基本数式に対してさらに詳細に場合分けをするためのものです。例をいくつかあげます。

場合によっては、複数のセグメントが関連するケースもあるので注意が必要です。

  • 人口:年代、男女、収入、地方暮らし/都心暮らし
  • 時間:朝、昼、夜
  • 都道府県:人口密度(多い・少ない)

フェルミ推定に関する解説本はすでにみなさんご存じのとおりいろいろとありますが、ほぼこれと同じことが書かれていると思います。

アプローチだけ並べられてもわかりにくいと思いますので、問題別にどういったアプローチが選択されるべきなのか、例を挙げて確認してみましょう。

以下の例は、あくまでフェルミ推定の方法を解説しているものになりますので、数値の計算やその検証までは含めていません。ちょっと長くなるので、フェルミ推定の進め方だけを確認されたい方はスキップしてください。

問題別に選択するアプローチの例

スマートフォンは日本にどれくらいある?

この問題だったら、まずは何個あるか?という問題なのでストック問題です。そして、スマートフォンの数は人に依存するか、場所に依存するかというと、人が持つものなので当然人の数に依存すると考えられますよね。

したがって、この問題であれば人の数、人口から始めていくべきでしょう。

人口から始めていく場合の基本式としては、このケースでは
日本の人口(人)×スマートフォンの保有率(%)×一人当たりのスマートフォン保有台数(台/人)
となります。

これはあくまでも基本式です。実際には、スマートフォンの保有率、保有台数は、すべての日本人にとって均一でしょうか。そうは考えられないですよね。そこで必要になってくる考え方が、セグメント分け(セグメンテーション)です。

ここでは、スマートフォンの保有率、保有台数は年代によって異なると考えます。具体的には、高齢の方はそもそもガラケーで十分なのでスマートフォンは持っていない、あるいはガラケーすら持っていないことが想像されるので、高齢の方は保有率を低くし、若年の方は多く持っていると考えましょう。

保有台数については、社会人の方であれば個人用と会社貸与のもので2台持ちの方も多いのでは、といった想像から保有数を調整していくと良いかと思います。

感覚としては、社会人の方の2割が2台持ち、残りが個人用のみの1台持ちとすれば、平均で1.2台が保有台数になる、と計算できますね。

結果は、マトリクス形式でまとめると、非常に理解しやすく、また計算もしやすくなります。ここでは最後まで計算を行いませんが、まとめ方は以下のようになります。

日本の人口は1.3億人ですが、計算し易くすることも考え、ここでは1.2億人という数字を使っています。年代別の割合も、簡易的に、0-80歳までの間に100%分布していると仮定することで、0-20, 21-60, 61-80には25%, 50%, 25%ずつ分布するとしています。

体育館ってどれくらいある?

この問題も、いくつあるのか?という問題なのでストック問題です。

人の数に影響されるか、場所に影響されるか、と考えると、正直どちらもあるとは思うのですが、ここは場所を選択したいと思います。

人で考えてみる(うまくいかないケース)

私としては場所を選択したいのですが、ここでは一応、人の数を選んでみたケースを想像してみます。人の数としては、体育館を利用する人々の数に影響を受けるのではないかという仮説に基づきスタートできるかもしれません。

もし、年間で体育館を利用する人数がわかって、そして体育館が年間で対応できる人数がわかれば、あとは稼働率などを使うことで、体育館の需要を満たす供給がどの程度あるのか、という考えから体育館の数がわかりそうです。

では、計算式を立ててみると、

人口(人)×体育館を利用する率(%)×体育館を利用する人が年間で体育館に訪れる回数(回/年)×・・・・÷体育館ひとつが年間で対処できる人数×稼働率(%)

なんだか複雑になりましたよね。体育館を利用する人の数と、その人たちが体育館を訪れる回数、そして一回で何時間体育館が使われるのか、体育館はそもそも何時間営業するものなのか・・・

一言でいえば、変数が多くなることが予想されます。まとめあげるだけで一苦労になりそうなので、ここは人で始めるよりも、私としては場所で始めた方がいいだろう、と考えます。

場所で考えてみる(うまくいくケース)

それでは、場所で考えますとどんな計算式が考えられるでしょうか。ここでは、体育館は市区町村ごとに決まった数があると考え、市区町村から始めたいと思います。考えの出発点としては、体育館は多くのものが市営であり、公共の要素が高いからです。

このケースでは、基本式は以下のようになります。
47(都道府県数)×一つの都道府県当たりの市区町村数(市区町村数/都道府県)×市区町村当たりの体育館数(体育館数/市区町村)

都道府県別に市区町村は40あるとして(本当は35らしいです)、そして一つの市区町村につき体育館が3つあると考れば、さきほどの人で考えた例と比べかなりスムーズに導出ができると思います。

このままでもいいような気もしますが、もし、この式にセグメンテーションを入れるとしたら、都道府県を人口密度の高いトップ10とそれ以外に分け、人口密度の高いところではより多くの体育館が存在し、人口密度の低いところでは少ないと考えていくこともできます。

使用するProxyがカギ

先ほどご紹介した例では、人の数よりも、場所で考えたケースの方が、スムーズに問題を解けることが多いのですが、ポイントは何を出発点にするか、です。

今回の例でいえば市区町村の数にたどり着くことが出来ればいいですが、その考えがないと、人で始めるしか思いつかず、かなり複雑な式を立式してしまうケースもあります。

こういうとっかかりになる情報をProxyと言ったりしますが、どんなものがあるかと言えば、国、都道府県、自治体、市区町村、駅、ビル、等が該当します。

国、都道府県数等であればそのものずばりの数(全世界で約200国、日本には47都道府県)を知っていることもありますが、Proxyの中にはそれ自体を推定しなくてはいけないものもあります。

まさに、今回の例で取り上げた市区町村はその例で、それ自体が問題の回答ではないものの、回答を導くために必要になるキーとして、都道府県数×都道府県当たりの市区町村数で求めました。

Proxyについては、あんまり時間をかけることもできないので、X×Yのように非常に簡単に求められるものを用いるようにしましょう。

また、Proxyについては、ストック問題のみではなく、フロー問題でも必要になるケースがありますので、ここについては様々な問題を解いてみて、よく使われるProxyを頭に入れておくと良いでしょう。

日本全体でボールペンってどれくらい売れてる?

こちらは売り上げを求める問題なので、フロー問題ですね。そして、特定の店舗ではなく、日本、といったマクロ視点のもので、かつ消耗品がターゲットとなるので、ここは購入頻度を使った計算式を用いる問題だと考えられます。

消耗品は、年に一回買うとかのレベルではなく複数回購入がされますので、考慮すべきは購入頻度、と言う考えですね。

売上ということは誰がどれくらい買うのかを考えることになるので、主体は人口になります。今考えに基づいて基本数式を立てると、
日本の人口(人)×ボールペン購入率(%)×年間での購入回数(回/年)×
一回当たりの購入本数(本/回)×1本当たりの単価(円/本)

このようになります。

売上という問題が出されたら、全体確認のところで年間ですよね?と聞いておくことも忘れずに行いましょう。

基本数式が出来たら、こちら出発点が人口ということもあるので、これまた年代にセグメントを分けて考えていきましょう。理由は、小・中・高校生、また大学生はシャープペンをメインに使用し、ボールペンは社会人が主なユーザーだと考えられるからです。

ただし、小・中・高校生・大学生も、色を付けるという目的ではボールペンは購入すると思われるので、購入率自体はあまり変わらず、購入回数や本数が変わる、というイメージでしょうか。

その場合は、「面接の中ではボールペンはどの年代も購入はするものとして、購入率は100%とし、基本数式から除外します。」といった基本数式の修正も行うようにしましょう。

では、年代別にセグメント分けをしてみた結果をマトリクスにまとめます。

学生は、色を分ける目的で赤、青などの好みの2種類を年に4回、社会人は黒のみという人、黒とその他の2種類、という人がいるイメージなので2本を年に12回購入するとします。

社会人の場合はオフィスにおいてあるというケースもあると思いますが、結局は消費している人は個人になるので、個人がどれだけ消費しているかという点で考えると、使い切らなくても月に2本は消費していると考えました。

61歳以上の方々はあまりボールペンを使うことも多くないのではという考えで、年に2回だけ、そして1本だけ購入するという内容にしてみました。

日本で自動車ってどれくらい売れてる?

これは売り上げに関するものなのでフロー問題、そしてマクロの視点であり、ターゲットは自動車という耐久品になります。

このケースでは、買い替え頻度を念頭においてアプローチを決めると良いでしょう。一度買ったら数年は買い換えないものが耐久品になりますので、耐久品については買い替えが何年に一度か、言い換えれば何%が今年買い換えられるのか、という点がポイントです。

自動車は個人で買うものですが、実態としては世態で共有されるものだと考えます。この視点に立つと、基本数式は、以下のようになります。
日本の世帯数(世帯)×自動車保有率(%)×世帯当たり自動車保有台数(台/世帯)×買い替え頻度(%)×単価(円/台)

そして、セグメンテーションですが、自動車は地方の世帯では保有率が高く保有台数が1台以上になるケースもある一方で、都心の世帯では保有率が低く基本的に保有台数は1台のみであると考えられます。単価についても、地方は100万円、地方は150万円と少々さをつけておきます。

こうした考えを基にマトリクスを作成します。

世帯数は1.2億人の人口に対して、2.5人で1つの世帯を構成すると考えることで全体を4,000万世帯として、それを都心に住む世帯と地方に住む世帯で20:80に分けました。

都心の自動車保有率は20%、地方は100%、そして保有台数は都心は1台、地方は世帯で1台と2台のケースが半々存在するとして1.5台としています。

駅前ラーメン店の売上ってどれくらいだと思う?

こちらは、売上なのでフロー問題、そしてかなりミクロな視点の問題となります。こういったケースには、稼働率と回転率を念頭に置いたアプローチをとりましょう。

特定の店舗となると、営業時間ごとに顧客の入り具合は変わり、1時間当たりの回転数も変わります。これを表すのが稼働率と回転率ですね。

基本数式は、以下のようになります。
店舗の最大顧客収容可能人数(人)×時間(時間)×稼働率(%)×回転率(回転/時間)×単価(円/人/回転)

セグメンテーションは、時間帯になります。稼働率、回転数率、さらには単価もお昼や夕飯の時間帯は高く、それ以外の時間は少ないと考えられます。

これをマトリクスにまとめてみましょう。

最大収容可能人数×稼働率=客数としています。
お昼前とお昼後は稼働率60%、お昼と夕方は100%、夜は80%としています。
回転率については、お昼は最も忙しく1時間で3回転、昼前と昼後は2として、夕方は少し長い時間お客様は過ごすので1.5、夜はさらに長く過ごすので1とします。

単価は夕飯の前は一律で1000円、夕飯は替え玉などを頼むことも考え少し多めの1200円、夜は飲み物も頼むことを考えて1500円としました。

結果を伝える、検証する

計算がひと段落したら、計算過程と一緒に、求めた結果を面接官に伝えます。計算については終わってから伝えるのではなく、過程を考えるところから面接官に伝えるようにしましょう。

そして、大事なポイントが一つ。

結果については、検証をする、あるいは何かしらのコメントをつけるようにしましょう。感覚的に妥当と思える数字かどうか、あるいは外れていると思われるのであればなぜそうなったのか、というポイントをここで面接官と話します。

検証の方法:分解してみる

例えば、ラーメン店1店舗の売り上げを求めたとしましょう。結果が10億でした。これは感覚的にずれているということがわかりますね。こんな時はいいのですが、じゃぁ4000万円となったときはどうでしょうか。

検証する方法として、導出とは別の切り口に分解してみることがあります。

一人当たりの売上にしてみる

ラーメン店に従業員が合計で10人いるとします。一人当たりの売上は、年間で400万円です。月で見ると、約30万円です。これは妥当な気がしますね。

感覚として近いかどうかを検証するには、ある程度細かな粒度に分解してい上げることが必要です。迷ったときには、別の角度で分解できないかを確かめてみましょう。

企業当たりの売上にしてみる

もう一つ例として、市場規模を求めたとします。ボールペンの市場が1000億円と出たとしましょう。これを検証する際、どう分解するといいでしょうか。

ボールペン販売業者が市場に10社いて、シェアを均等に分け合っているとします。そうすると、各販売業者はボールペン販売から100億円を得ているという計算になります。

うーん、ちょっと、多いような気がしますね。感覚ではありますが、100億もいかないのでは、という気はします。あくまで感覚ですが、少なくとも1000億円です、という状況よりは多い・少ないを判別できるのではないかと思います。

おわりに

いかがでしたでしょうか。
フェルミ推定の流れ、なんとなくわかりましたでしょうか。

あとは、練習するのみです。こちらのブログでも、引き続きフェルミ推定、ケース面談系の内容は扱っていきますので、ご確認頂けたらと思います。

コンサルの採用面接、皆さんがんばりましょう!

-Consulting/Business

Copyright© Soloblog - Tech Consulting , 2021 All Rights Reserved Powered by AFFINGER5.